Ab initio study of magnetism at the TiO₂/LaAlO₃ interface

Mariana Weissmann, Valeria Ferrari

Departamento de Física, CNEA, Buenos Aires, Argentina

Andres Saul

CINaM : Centre Interdisciplinaire de Nanoscience de Marseille

La Plata, October 2009

Experimental background

- TiO₂ with anatase structure grows epitaxially on LaAlO₃
- Magnetism first appeared in samples doped with Co [Review: Janisch *et al*, JPCM **17**, R657 (05)]
- Magnetism appeared later in samples doped with Cu [Duhalde *et al*, PRB **72**, R161313 (05)]
- Magnetism also appeared in undoped samples [Yoon *et al*, JMMM **309**, 171 (07)]
- High Curie temperature in all cases
- Oxygen vacancies are present and enhance magnetism [Sasahara *et al*, Nanotechnology 16, S18 (05)].

Previous calculations

Calculations for undoped bulk TiO₂ -anatase do not show magnetism, not even relaxing the structure in the presence of oxygen vacancies.
[Errico *et al*, PRB 72, 184425 (05);
Weissmann *et al*, Physica B 398, 179 (07)].

• At the TiO₂/LaAlO₃ interface, a magnetic moment appears in the Ti atom if it has neighbour oxygen vacancies. [Weissmann *et al*, J. Phys: Conf. Ser. **167**, 012060 (09)].

In that case, $Ti^{+4} \longrightarrow Ti^{+3}$ or Ti^{+2}

Present work

We study undoped anatase TiO_2 grown over LaAlO₃ with oxygen vacancies at the interface, to answer the following questions:

- Is the system magnetic?
- Is magnetism located at the interface?
- How is the interface structure modified?

Method of calculation

Full Potential LAPW (Wien2k code)

- DFT in the LDA approximation.
- On-site Coulomb interaction added: LDA+U
- Interfaces studied by the superlattice method:

 \dots TiO₂ /LaAlO₃/TiO₂ /LaAlO₃/TiO₂ /LaAlO₃...

TiO₂ -Anatase

Two ways of stacking

If there are oxygen vacancies in TiO_2 , the left interface is preferred for electrostatic reasons.

Densities of states - LDA

Oxygen vacancy in bulk anatase

Relaxed Structures

Non magnetic

DOS of superlattices with interfacial oxygen vacancies

Interface B: magnetic

Interface A: non-magnetic

Stoner-like interpretation: non-magnetic calculation

Charge density in the energy range [Ef-0.5eV,Ef]

Conclusions

- Without oxygen vacancies: no magnetic solutions in bulk anatase or $LaAlO_3/TiO_2$ superlattices.
- With oxygen vacancies:
 - Bulk anatase, not magnetic for different vacancy concentrations and relaxed structure.
 - Superlattice with $AlO_2/TiO_{2-\delta}$ interface, magnetic or not depending on the stacking.
 - In superlattices A and B, interface $Ti^{+4} \rightarrow Ti^{+3}$ but only one of them has a magnetic solution (both in LDA and LDA+U).
- A Stoner-like criterion is used to understand the origin of magnetism.
- Our results might be related to the widespread magnetic behaviour obtained with different experimental conditions.