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This is a review of our papers, PRB 78, 125116 (2008) and PRB 79, 241312(R) (2009), 
and a report on further developments. Our method is based on Slater's transition state 
idea and Janak's theorem. With those tools we were able to define a self-energy, not the 
self-energy of GW but that of elementary Electrostatics, and find a way to calculate it for 
the electronic elementary excitations in a crystal. Our point of view is that the elementary 
excitations are in localized wavefunctions, not Bloch functions, and that is why they have 
sizable self-energies. The inclusion of the self-energy is made by means of a ``self-
energy potential'' defined in the atoms of the crystal. Thus the procedure is very simple 
and fast. The new band gap results are as good as, or perhaps even better than, the 
published GW results. Originally we adapted our method to the codes VASP and 
SIESTA (for programs and instructions see www.gf1901.net). Lately we adapted the 
method to WIEN2k, with which we calculated CdTe, CdSe, MnO, and NiO. In the case of 
the last oxide, we diverged from Professor Blaha's paper [PRL 102, 226401 (2009)], with 
whom we would welcome a friendly discussion.
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E = total energy

e = Kohn-Sham eigenvalue

f = occupation 
α = KS one-particle state

Janak, 1978

Leite and Ferreira, 
        1971



  

E (0) − E (−1) = eα(−1/2) = − Ionization Potential
E (0) = energy of atom E (-1) = energy of ion
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Self-energy !



  

Assuming linearity



  

How to calculate the self-energy?
Self-energy potential

But we will never calculate this fantastic expression!



  

STOP

Let us present some results

Later we return to theory
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Conjecture



  

Returning to the theory



  

Add self-energy potentials to atoms of a crystal.
Has to cut Coulomb tail of charge of +1/2.



  

Determination of the Band Gap



  

The self-energy of conduction is usually unimportant and its potential 
does not differ much from that of the valence.

Choose

extremum



  

Then, the method consists of the following steps:
1 – Calculate the atoms and their -1/2 ions
2 – Take the differences between their KS potentials
   to define the “self-energy atomic potentials”.
3 – Multiply the self-energy atomic potentials by the
   cutting function so as to cut the Coulomb tails. This
   process defines the “self-energy crystalline potentials”.
4 – Add the self-energy crystalline potentials to all atoms
   of the crystal and make the band calculation.
5 – Repeat the band calculation for other values of the 
   parameter CUT and choose the value leading to
   an extreme gap.
   Note a – Usually only the self-energy of the anion is 
                 important (valence band).
   Note b  - The good parameter CUT is the same for
                  all compounds of that atom with the same
                  bonding type.



  

Ferreira et al, IJQC (1979), PRB (1979); Harris, IJQC (1979)

An energy functional



  



  

Extremum always exists and probably at CUT near the atomic radius.



  

So far, only the one-particle excitations.
What about the ground state properties? Geometry, Bulk Modulus... ?

HK and KS never gave permission to subtract terms from the total energy.

What was subtracted must now be added



  

GaAs



  

The case of NiO
1 - Antiferromagnetic

2 – Rock Salt

3 –  Spin up and spin down planes alternating along the body diagonal

4 – Simple description

5 – Alternation of Ni planes



  

Parity and spin inhibit

transition to first empty bands

Evidence for these bands:

1 – Electron-energy loss, Müller and 
Hüfner, PRB 2008.

2 – Inelastic x-ray, Huotari et al, 
PRB(R) 2008.
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